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SIMPLE TEST CALCULATIONS CONCERNING FINITE 
ELEMENT APPLICATIONS TO NUMERICAL WEATHER 

PREDICTION 

J. STEPPELER* 
ECM WF, Shinfeld Park, Reading, U.K. 

SUMMARY 

Different finite element schemes are investigated with respect to their application in numerical weather 
prediction. Different methods of staggering of variables are considered. The tests concern the accuracy of a 
Rossby wave prediction and the generation of noise in a geostrophic adjustment process. Theoretical results 
concerning the noise level of different schemes are confirmed by computations with a one-dimensional 
model. Favourable results were obtained by hybrid schemes, using different Galerkin treatments for different 
terms of the dynamic equations. 
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1. INTRODUCTION 

In numerical models of the atmosphere an accurate treatment of transient features of the flow is 
essential. This leads to the requirement of a reasonable order of the discretization. The finite 
element method is able to obtain ahigh degree of accuracy, as shown in Reference 1. Atmospheric 
models based on this method are described in References 2-4. 

Another important aspect of atmospheric models is the occurrence of a stationary or  very 
slowly varying part of the flow. This represents the climate of the model and is caused by a 
balance of forcing and different transport processes. Associated with this is the problem of 
geostrophic adjustment. 

In this respect the numerical properties of an atmospheric model may be analysed by similar 
considerations as aeronautical applications of finite elements, where the stationary flow is of 
interest. For such applications a number of finite element applications suffer from noise problems. 
This leads to the requirement of mixed in t e rp~ la t ion ,~ .~  meaning different choices of finite 
element representations for the pressure and velocity variables. 

As pointed out in References 7 and 8, the requirement for mixed interpolation for finite element 
schemes in stationary flow applications is associated with the requirement for staggered grids in 
meteorological models.’- lo  This latter requirement is the result both of practical experience in 
numerical weather prediction and of theoretical analysis based on the transfer function analysis of 
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gravity waves.' The request for staggered grids is valid both for finite element and finite difference 
discretizations.'* ' 

In the context of finite element discretizations a staggering of the grid can be achieved in 
different ways. We consider here the possibility of using a combination of linear and piecewise 
constant  element^.^' * A drawback of these methods is a possible degradation of accuracy, since 
part of the discretization uses low-order basis functions. This will be investigated by predictions of 
a one-dimensional Rossby wave. 

It is intriguing to combine the positive effects of different methods by combining different ways 
of staggering. In this way hybrid schemes are obtained which are based on the simultaneous 
application of two different grids. Theoretical results" indicate that the staggered grid will be 
necessary for the treatment of the gravity terms. Accuracy considerations' suggest an unstaggered 
treatment for the advection terms. Simple hybrid schemes are obtained by using Petrov-Galerkin 
methods for gravity wave terms. An example of this kind is given in Reference 11. In the present 
paper we investigate schemes which use a combination of an Arakawa12 C- and A-grid. Hybrid 
schemes based on Petrov-Galerkin and back-transformation methods will be investigated. 

The example of a one-dimensional flow with mountain forcing will be used to investigate the 
geostrophic adjustment process. The results essentially confirm theoretical expectations. 

All applications of finite elements or finite differences to numerical weather prediction use 
regular grids or grids with a smoothly varying grid length,13 with the notable exception of the 
model by P h i l l i p ~ ' ~  which refines the grid by a factor of two. Much of the work with finite element 
models for numerical weather prediction is comparatively old and uses uniform interpolation on 
an Arakawa A-grid. 

In the present paper the suitability of different schemes for variable resolution is investigated. 
We consider the situation that the grid length is suddenly reduced by a factor of two. One- 
dimensional experiments seem suitable to establish necessary conditions on the applicability of 
such a scheme. 

In the present paper the element functions have an order not higher than unity. The 
investigation of higher-order elements for horizontal discretization of atmospheric models is left 
for future investigations. For the vertical discretization, finite element schemes with linear,' 5*  * 
quadratic16 and cubic spline' basis functions have been used in numerical weather prediction. In 
particular, schemes using quadratic basis functions are worth investigating, since the numerical 
cost of the schemes15*16 was approximately the same arld, according to Reference 1, quadratic 
elements have a much better accuracy. 

2. BASIC EQUATIONS 

In order to test the horizontal discretization for atmospheric models we use the shallow water 
equations 

a 
- U =  - U U , -  V U , - H , + f V ,  
at 

a 
- v = - uv, - vv, - H ,  - fU, 
at 

where U and Vare the velocity components in the X- and Y-direction respectively, H is the height 
of the free surface, F ,  is the orographic forcing field and f is the Coriolis parameter. 
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An alternative form of (1) uses vorticity and divergence as independent model variables. These 
equations have been used successfully for atmospheric m0del1ing.I~ A transfer function analysis'O 
shows that this form of the shallow water equations can be used with unstaggered meshes. There 
is, however, some incentive to use the primitive equations (l), since the discretization will be 
simpler and use less computation time. In particular, the introduction of semi-Lagrangian 
methods makes it desirable to use the primitive equations.' 

A one-dimensional form of (1) is obtained as 

a 
- U =  at - U V x + f V - H x ,  

a 
at 
- V =  -UVx-fU-HOy, 

a 
- H  at = - ( ( H  - F,)U), ,  

with H; being a constant. An exact solution of (2) is the Rossby wave, which for an arbitrary 
choice of the function Ha is defined as 

H ( X ,  t )  = H,(X - V,t), 

V ( X ,  t )  = -HOy/ f = U ,  = constant, 

V X ,  t )  = H d f ,  
F J X )  = 0. 

(3) 

The reproduction of this solution will be used as an accuracy test. 
Wave solutions of (3) can be obtained by using H ( X ,  t )  = exp[i(kX - vt)], with v being the 

Rossby wave frequency and k the wave number. From (3) we derive v = V,k. For the phase 
velocity C, = v/k and the group velocity C ,  = dv/dk we obtain C, = C ,  = U,.  This means that 
there is no wave dispersion. 

Another test problem will be the stationary equations obtained from (2) in the presence of a 
mountain: 

O =  - V U x + f V - H , ,  

0 = -UVx  - f U  - HOy, (4) 

0 = ( ( H  - F,)V),. 

For our test problem we will choose a mountain forcing function F,  which will be different from 
zero at just one grid point. Let us introduce for (2) the short notation 

where ( 5 )  represents one of the equations of motion in (2). 
The finite element approximation tries to find approximate solutions for ( 5 )  of the form 

ib) = c $,C,(X),  (6) 
P 

where the $, are the amplitudes of the representation, which determine an approximated model 
state for a given time, and the C J X )  are the basis functions of the scheme. The index p counts the 
different degrees of freedom or amplitudes of the scheme. 
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The standard Galerkin approximation of ( 5 )  provides prognostic equations for the +,,: 
P 

with 

(a, b) = dXa(X)b(X). s 
Equation (7) is an implicit equation for the amplitude tendencies $,, which can be solved 
efficiently by Gaussian elimination. 

An alternative to (7) is the Petrov-Galerkin method 

Where the cp represent any set of linear independent functions, not necessarily identical to the 
basis functions C,. 

We consider two choices, 2, and e,, for the basis functions C,, or c,, which are shown in 
Figure 1. The e, lead to piecewise linear interpolation and the x ,  lead to piecewise constant 
interpolation in one space dimension. With the basis e, we will use integer values for the index v, 
and with x ,  the v will be half-integer values v = p + $ with p having integer values. For such basis 
functions the amplitudes are also node point values defined at X,. The intervals (X,,, Xp+l )  in 
Figure 1 are the elements. We will here always use the same one-dimensional elements (X, , ,  X,, 
for the representation of the different fields, discarding the possibility of staggered elements, which 
were discussed in Reference 10. However, since with the basis functions 1, the natural definition of 
the amplitudes is on half-values v = p + i, a staggering is possible for the amplitudes, even 
though the elements are always unstaggered. The staggered schemes in two space dimensions 
were investigated in Reference 8. 

-1 
X3.5 

0 

O 1 2 3 4 5 6 7 

X 

Figure 1. The basis functions e,, and x,,+~ 
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3. DEFINITION OF NUMERICAL SCHEMES 

The right-hand side of (2) may be split into two parts, the advection terms A and the gravity wave 
terms G: 

a 
- U = U A + U G ,  at 

a 
- V = V A  + VG,  
at (9) 

a 
- H = H A + H G ,  
at 

U A  = -uux, 
V A  = - V V x ,  VG = - H ;  -fV, (10) 

U G =  - H  x +fK 

H A  = - U H x ,  H G  = - UFO, - ( H  - F,) U,. 

The physical significance of the two terms A and G is quite different, with the latter being 
responsible for gravity wave motion. 

We will here investigate schemes 1-3 of the two-dimensional schemes defined in Reference 8. 
These are standard Galerkin schemes (7) which are defined if the basis function representation (6) 
is given. The basis function representations of schemes 1-3 are given in Table I. Only the 
piecewise linear basis functions e , ( X )  and the piecewise constant basis functions xp+ will be 
used. These schemes will be referred to as standard schemes 1, 2 or 3. 

We will also investigate hybrid numerical schemes, which are obtained by applying different 
numerical approximations to terms A and G in (9) and (10). For such schemes we have instead 
of (7) 

4, = 4; + 4,". (1 1) 
For the advection term 4," in the hybrid schemes we will always use standard Galerkin schemes 
with piecewise linear basis functions for all fields U ,  V,  H. The standard representation of U ,  V, H 
will be by (6) with C , ( X )  = e , (X) :  

(12) 

The choice of linear basis functions for the advection part of the tendency seems necessary 
because the motivation of hybrid schemes is to preserve the accuracy of the treatment of the 
advection term, which was demonstrated in Reference 1. 

1 G;(e,, e/J) = (V, ee). 
P 

Table I. Basis function representation in one space 
dimension 

Basis function for 

Scheme U V H 

1 e P  e P  e P  
2 X p + l / Z  X P + l / Z  x p +  ll.7 

3 eP X P + 1 / 2  X p + 1 / 2  
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A theoretical analysis of advection discretization has been given in Reference 7. This is directly 
applicable to the discretization described above. Since here we use fourth-order discretization for 
all fields, we do not expect a dependence of the accuracy on the Rossby radius of deformation, as 
opposed to schemes discussed in Reference 7, which use highly accurate schemes only for some 
of the fields U ,  V, H. A rather extensive analysis of the advection terms has been given in 
Reference 18. 

The simplest way to obtain a hybrid scheme is to define 6; by a Petrov-Galerkin method: 

with G being computed according to (10) using the piecewise linear representation (6) with 
C , ( X ) = e , ( X )  for U ,  V, H. Ca in (13) may be any of the bases in Table 1. The discretized 
equations are given by equations (13), (12), (1 1) and (10). With the basis belonging to scheme 1 the 
resulting Petrov-Galerkin scheme will be identical to scheme 1. The other two schemes we denote 
as schemes 2P and 3P. Scheme 2P is used in Reference 11. Since it results in an acceleration of 
gravity wave speeds, it requires a semi-implicit time discretization in order to be solved efficiently. 

A necessary condition for the suitability of the numerical scheme is provided by the transfer 
function a n a l y s i ~ . ~ ~ ' ~ ,  19,20 A short introduction to this method is given in Appendix I. It analyses 
gravity waves as predicted by the numerical treatment of a linearized version of (1). A necessary 
condition to be required of a numerical scheme is that the group velocities of gravity waves in the 
numerical approximation have no sign reversal. For the standard Galerkin schemes 1, 2 and 3 
such an analysis was given in Reference 8. Schemes 1 and 2 are unsuitable, which is in accordance 
with References 9 and 10, since these are unstaggered schemes. Scheme 3, however, gives positive 
group velocities for all directions of wave propagation. The Petrov-Galerkin scheme (13) is 
analysed in Appendix I and positive group velocities are obtained for schemes 2P and 3P, that is 
also for the unstaggered scheme 2P. In Section 4 test integrations using scheme 3P will be 
presented. 

We will also use a transformation hybrid scheme which we will denote as scheme 3T. Again 
with this scheme the treatment of the advection term will be given by (12), and the representation 
of all fields is by the e , ( X )  basis according to (6). For the computation of the term G in (9) we will 
use a representation of U ,  V, H called 0, v, fi in the basic functions for scheme 3 in Table I: 

- -  - 
The amplitudes Up,  V,, 1/2, H,+  1/2 in (14) are obtained from the amplitudes Up,  V,, H ,  in the e, 
representation by interpolation: 

The averaging operation in (16) and (17) is invertible if the number of independent points V,  is 
uneven with periodic boundary condition. We denote this inverse operation by L -  : 

( H , }  = P{fi,}. 
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Denote by c the term G in (10) - computed by the representation (14). Then we compute the 
gravity wave term G;, G;+ 1,2r  Gf+ in the representation (14) as 

The 4; in (11) are then obtained by 

u; = u,", 

4. NUMERICAL RESULTS 

We use the one dimensional test problem defined in Equation (2). For spatial discretization we 
will use one of the schemes 1, 2, 3, 3P or 3T from Section 3. Schemes 1 and 2 are schemes with 
equal interpolation, or unstaggered schemes. Scheme 2 results from piecewise constant elements 
and is a second-order finite difference scheme. Scheme 1 uses linear elements and provides a 
highly accurate treatment of the advection terms.' Scheme 3 uses mixed interpolation on a 
staggered Arakawa C-grid. Since it uses piecewise constant basis functions for some of the fields, 
the accuracy is less than that of scheme 1. Schemes 3P and 3T are hybrid schemes which use 
scheme 1 for the advection terms and scheme 3 for the gravity wave terms. Petrov-Galerkin 
treatment for the gravity wave terms is used with 3P, and 3T is based on the back-transformation 
method. The time discretization is carried out by using the leap-frog scheme: 

(21) $:+' = $:-' + $:;2At, 

with n denoting the time level. Since one-dimensional solutions are numerically much more stable 
than two- or three-dimensional solutions, we do not employ a space or time filter, which for 
higher-dimensional models is necessary to maintain stability. 

Simulation of the Rossby wave 

The first test is the simulation of the Rossby wave (3). We use a regular grid with At = 200 s, 
grid length AX = 400000 m, 19 independent grid points, periodic boundary conditions and 
F,  = 0. The initial velocity fields are chosen to satisfy the geostrophic balance condition 

v = H d f ,  

U = -HO,/fr (22) 
with HO, = 0.01 m s-' and, f =  04001 s-'. The forecast time was chosen such that just one 
rotation is performed. Figure 2 shows the initial H-field and forecasts using schemes 1, 2, 3 and 
3P. Scheme 1 has a much better accuracy than the second-order finite different scheme 2. Also the 
accuracy of scheme 3 is not good enough, being about the same as that of scheme 2. Scheme 3P, 
however, which uses the lower-order treatment only for the gravity wave terms, gives a similar 
quality of Rossby wave prediction as scheme 1. 
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Figure 2. The initial H-field (INI) and forecasts using schemes 1, 2, 3 and 3P 

Geostrophic adjustment and irregular resolution 

The advantages of the staggered scheme 3 were established with respect to the geostrophic 
adjustment p r o ~ e s s . ~ ~ *  An example of adjustment is obtained by using (2) with a non-zero 
mountain forcing function F,. We also want to test the performance on irregular grids. 

In combination with an error estimator model, a variable resolution can be used to refine the 
resolution selectively in regions where an increased accuracy is needed. In an important paper, 
Skamarock et al.” have shown that adaptive mesh refinement is possible using standard 
numerical schemes. Numerical problems at the boundary between the coarse and fine meshes can 
be avoided if the boundary is in regions of a low error estimate for the coarse mesh, which 
corresponds physically to regions of smooth fields. However, for operational use it may be 
necessary to ask for robust schemes, which also work properly when the boundaries do not all 
conform to this requirement. 
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The question of robustness of a scheme is even more important when considering nested 
models like that described in Reference 14 with a fixed region of high resolution. This region is 
determined by the interest of the user of the model rather than by an error estimate. For such 
models it is clearly necessary that there are no numerical noise problems caused by the boundary 
between coarse and fine mesh. In particular, the forcing fields, such as orography, are in current 
models defined on the smallest scales in order to obtain as much local detail of the forecast as 
possible. The test calculations described in the following are designed to investigate the robust- 
ness of numerical schemes in the presence of small-scale forcing. 

For our experiments we use 23 independent grid points, with 

X , , ,  - X ,  = 200000m for v ~ ( 3 , .  . . , lo}, 
elsewhere. 

The initial values are 

H = H, = 20000m2s-2, 

U = U ,  = -HOy/f; 

v =  0, 

with H ;  = 0.01 ms-’ and f =  04001 s-’. 

part of the grid, defined by 
A first set of experiments was done using a single small-scale mountain in a uniformly resolving 

F,,,  = 7000 m2 s-’, 

F ,  = 0 elsewhere. (25) 

The formulae above refer to equation (10). 

with w being an arbitrary function: 
There exists a stationary solution for this problem” which can be given in parametric form, 

U ( X )  = UOA1 - w,,), 
V X )  = - fwx,  

H ( X )  = - U2/2 -f2w + (V,2/2 + H,),  (26) 
F , ( X )  = H - H,U,/U. 

The stationary state is approximated by performing 4000 time steps with Ar = 200 s and 
averaging this in time. After this procedure we perform another 4000 time steps, and the solution 
is shown in Figures 3-5 for schemes 1, 2 and 3P respectively. 

The forecast with scheme 1 (Figure 3) shows that the solution is contaminated with some small- 
scale features, the so-called noise. Even though a very extended time interval was used to prepare 
the initial state by averaging, the solution is not stationary with respect to the noise features. The 
same is true for the computation with scheme 2 (Figure 4). However, this less accurate scheme has 
much more noise. The best results are obtained by scheme 3P (Figure 5). The amplitude of the 
non-stationary noise has become very small. The results described in Figures 3-5 are consistent 
with theoretical results’O as applied to the schemes investigated in Reference 8. 

One motivation for grid refinement is the introduction of a physical forcing in the small scale. A 
further set of experiments was carried out by replacing the mountain forcing given by (25) by a 
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Figure 3. Computation of the stationary flow in the presence of a mountain forcing by scheme 1.  The initial state (bottom) 
was prepared by time-averaging a forecast of 4000 steps. The forecasted H-fields are shown after 1000 (L), 2000 (M), 

3000 (N) and 4OOO (0) steps 

mountain which is situated near the boundary of the coarse and the fine mesh: 

F,,,  = 7000 m2 s-', 

F ,  = 0 elsewhere. (27) 

Since we are now dealing with a situation of irregular resolution, no theoretical results concerning 
the behaviour of discretizations are available, except those describing the simulation of stationary 
 state^.^ These results favour the use of staggered schemes such as our scheme 3. The initial state is 
again prepared by time-averaging a forecast of 4000 steps. 
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Figure 8. As Figure 6, for scheme 3T 

The forecast for scheme 1 is shown in Figure 6. As in Figure 3 there is some noise, which this 
time is limited to the fine mesh region. There is no indication that the presence of irregular 
resolution in the region of forcing leads to a deterioration of the results as compared to Figure 3. 

Scheme 3P is unsuitable for this situation since it leads to considerable noise. The results of 
scheme 3 (Figure 7) are quite good. However, as we have seen in Figure 2, this scheme does not 
have a suitable accuracy for the computation of the transient Rossby wave. 

The hybrid scheme 3T, based on the incorporation of scheme 3 by back-interpolation, works 
well for this problem. The result (Figure 8) shows a rather good representation of the geostrophic 
adjustment process. 

In order to demonstrate that scheme 3T is also suitable for the treatment of the transient 
features of atmospheric flow, Figure 9 shows the prediction of a Rossby wave. The physical 
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Figure 9. Forecast of a Rossby wave in an irregular grid by scheme 3T with Ar = 200 s. The initial and forecasted H-fields 
are shown after 100 (I), 200 (M), 300 (N) and 400 (0) time steps 

situation is as in Figure 3, but the grid length is halved between grid points 3 and 11, as described 
in (23). The accuracy of simulation is comparable to that of the accurate scheme 1 (and 3P) in 
Figure 3. The irregularity of the grid does not seem to cause special problems. The inaccuracy of 
simulation seen in Figure 9 is consistent with that encountered in the advection process.' 
However, since our system contains fast-moving gravity waves, the errors have spread over the 
whole domain rather than being concentrated near the trough. 

5. CONCLUSIONS 

Numerical schemes for atmospheric simulation are required to simulate transient features 
accurately as well as to give a noise-free representation of quasi-stationary states. The first 
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requirement demands a high enough order of approximation, while the second makes it necessary 
that the scheme has a physically reasonable behaviour also near the limit of resolution. 

The hybrid finite element schemes 3P and 3T match these two requirements by combining an 
unstaggered treatment of the advection terms with an approximation of the gravity wave terms in 
the Arakawa C-grid. Test computations of a transient Rossby wave and a geostrophic adjustment 
process have been provided to demonstrate this effect. The hybrid scheme 3T also shows good 
behaviour for an irregular grid. 

APPENDIX I: TRANSFER FUNCTION ANALYSIS 

The transfer function analysis, as developed in References 9, 10 and 19, is a theory which can 
analyse the main source of the noisiness of numerical schemes. It has been applied to the analysis 
of numerical ~ c h e m e ~ ~ * ~ ~ ~ ~ ~ ~ ~  and is based on earlier work presented in Reference 24. The method 
applies to linear space-invariant systems. An output signal Yo(X) of a system is related to an 
input signal Yi(X). Denote the Fourier transforms as yi(k) and fo(k): 

f i ( k )  = Yi(X)e-ikXdX, 

fo(k) = Y0(X)e-"'dX. 

s 
s 

Input and output are related by 

fo(k) = &k)fi(k) .  (29) 
When &( k) is known, the signal deformation can be analysed. In numerical systems the impact of 
the numerital discretization error on signal propagation can be investigated. 

Writing 4 as 

&( k )  = I &( k) I eiak, (30) 
the propagation error can be analysed as amplitude error arising from l&k)l, and phase error 
which comes from exp(iu,). For meteorological application we consider the linearized gravity 
wave equations as a linear filter. The basis equations are obtained by linearizing (1) in an infinite 
domain with no mean flow: 

aulat -jiv + ahlax = 0, 

ahlat + H aulax = 0, 
aulat +jiu = 0, (31) 

where u, u and h are pertubation velocities and heights, and H is the mean height. 
Introducing Fourier transforms 

U(k, t )  = U ( X ,  t)e-ikXdX, s 
etc., we obtain from (31) 

aclat = ffi - ik6, 

afilat = -fii, 

= -ikH6, 
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with initial condition 

Ci = i j (k ,  0)  = V ( X ,  O)e-ikXdX, s (34) 

etc. The solution of (33) is given in Reference 9 and was analysed with respect to amplitude and 
wave propagation errors. Amplitude deformation of a numerical scheme is more difficult to 
analyse. It has to be required that the overall solution is damped for wave numbers for which it is 
inaccurate. A specially designed explicit diffusion will be necessary in most cases. We consider 
here only wave velocity errors. For solutions of the form 

(35) 

we obtain’ for the frequencies 

v = ( f 2  + k Z  H)’”. 

For the finite element approximations defined in (7) and (8) the approximation of (33) takes the 
form - 

adii/dt = a f u  - ipgh, 

udijldt = -a  fij, 

ydL/dt = -ipHC. 

For the approximated frequencies v2 we obtain 

v, = (f + p2H/ay)’/’. 

We consider the phase and group velocities C, and C, of our system: 

C ,  = v/k,  

c, = av/ak. 

For the approximated system we obtain 

Ci = va/h, 

c: = av,/ak. 

(37) 

(38) 
The balanced state of the atmosphere is assumed by the process of geostrophic adjustment. This 
can only be properly represented if the numerical approximation does not reverse the sign of the 
group v e l ~ c i t y . ~ ~  lo  

We have therefore as a necessary condition a numerical scheme 

qc ,  2 0. (39) 
For schemes 1,2 and 3 the evaluation of (37) was carried out in Reference 8, and scheme 3 proved 
to be a suitable discretization. Since we are interested in grid lengths AX = 100 km or smaller, it is 
reasonable to consider the case f = 0. 

For the Petrov-Galerkin schemes 2P and 3P the evaluation of (37) is given in Table 11, showing 
that both schemes are suitable with the Petrov-Galerkin approach, even though 2P is an 
unstaggered scheme. For scheme 2P an increase of wave velocities above the analytic values is 
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Table 11. Relative group velocities C;/C,  as 
function of wave number 

Scheme 2P Scheme 3P 
kAX/a CYC, cat, 
-~ ~ 

0.4 1.53 1.2 
0.6 2.9 1.39 
0.8 10.5 1-23 
1 .o 0 - 

noted, which is singular for kAX/n  + 1. With explicit time integration schemes, CFL problems 
may be expected, but using the semi-implicit method, scheme 2P is suitable and has been used in 
Reference 1 1. 

APPENDIX 11: LIST OF SYMBOLS 

basis function 
basis function for Petrov-Galerkin method 
linear spline basis function in one space dimension 
Coriolis parameter 
mass matrix 
right-hand side of dynamic equations 
time 
velocity components in X -  and Y-direction 
space co-ordinate 
field 
field in approximation space 
piecewise constant basis function in one space dimension 
grid length 
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